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DEFINITION 10.1. Soit V' un K-espace vectoriel et n > 1 un entier. Une forme multilineaire en
n variables sur V' est une application

| o K
A
(/Ul’... "Un) o A('Ul,“‘ 7UTI,)

telle que pour tout i = 1,--- ,n et tout choix de n — 1 vecteurs v; € V, j # i, Uapplication A
“restreinte a la 1-ieme composante”

v, €V Avy, - 05, ,0,) €K
est lineaire:

Ay, -+ A+ 05, 0n) = MA(v1, 0,0 0n) + Avg, o 0k up).

L’ensemble des formes multilineaires en n variables sur V est note

Mult™(V, K) ou bien (V*)®"(notation ”produit tensoriel”).

PROPOSITION 10.1. L’ensemble Mult™ (V, K) = (V*)®" des formes multilineaires en n vari-

ables est un K -espace vectoriel quand on le muni de ['addition et de la multiplication par les scalaires
usuelle pour les fonctions a valeurs dans K: VA, Z € (V*)®n

AN +ZE)(v1, -+, vn) = A (v1, -+ ,vn) + E(V1, 0+, p).






THEOREME 10.1 (Dimension et base de ’espace des formes multilineaires). Soit d = dimV,

B = {e1, - ,eq} CV une base et B* = {e},---,ei} C V* la base duale. Alors V*®™ est de

dimension finie egale a d"; une base de V*®™ est donnee par ’ensemble des formes multilineaires
de la forme

e;l Q- ®e;7n, quand ji,- - , jn parcourent {1,---  d}.
On note cette base

(%*)@m = {e;l Q.- ®e;n’ (j17 T ’.771) S [17d]n}
Pour tout A € (V*)®™ on a la decomposition

A=Y ") Aej,,--ej,)e), @ Qe

jla"' ajngd



Foumes %m&v\ )




DEFINITION 10.2. Une forme multilineaire

AV K
est dite
— Symetrique si Vi # j < n
(G1)k= A
c’est a dire V(vy, -+ ,v,) € V™, on a
AW, 05, Ui ) = A1, U4y, Uj, + , Up).

Autrement dit si la valeur de A ne change pas quand on echange deux composantes.
— Alternee si Vi # j < n

(17).A = —A
c’est a dire V(vy, -+ ,v,) € V™, on a
A(”l)'” 7vj"” s Ugy s o ,’Un) — —A(Ul,“‘ s Ugyr o 7/Uj7'” 7Un)-

Autrement dit si sa valeur est changee en son opposee si on echange deuxr composantes
distinctes.

L’ensemble des formes multilineaires symetriques en n variables sur V est note
Sym™ (V; K).

L’ensemble des formes multilineaires alternees en n variables sur V' est note
AL (V; K).

PROPOSITION 10.2. Les ensembles Sym™ (V; K) et Alt"™ (V; K) sont des SEV de Uespace vec-
toriel Mult™ (V; K).
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THEOREME 10.2 (Action par permutation sur les formes multilineaires). Pour tout o € &,
l'application
o.e: A e Mult™(V, K) — o.A € Mult™(V, K)
definit un automorphisme du K-ev Mult(")(V, K).
Plus precisement, l’application

o €&, oec Aut(Mult™ (V, K))
verifie

— Soit Id,, la permutation triviale. On a VA, Id,,.A = A autrement dit

Idn.. = IdMult(")(V,K)°
— VA, Vo, 7€ G, on a
(coT)A=o0.(T.A)
autrement dit
(coT).e =(0.0)0(T.0)=0.(T.0).

En particulier, pour tout o
(0.0)o (07 0) =Td,.0 = I (v, k)

et donc o.e est un automorphisme lineaire de Mult!™(V, K ) de reciproque o~ .e.

Ainsi
o 0.e

definit une action a gauche &, Mult(™ (V, K) par automorphismes lineaires.
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THEOREME 10.3. Les formes multilineaires alternees Alt™™ (V; K) (resp. symetriques Sym™ (V; K))
sont exactement les formes multilineaires verifiant

(10.1.1) Vo € 6,,0.A =sign(o)A (resp. o.A = A).
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THEOREME 10.4 (Dimension des espaces de formes alternees). On suppose que car(K) # 2. Soit

0 s d
dim Alt™(V; K) ={ 1 sim=d
C?’L < d
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THEOREME 10.5. La function Ay : V¢ — K definie pour un d-uple de vecteurs (v1,-++ ,vq)
s’ecrivant dans une base # = {ey, - ,eq}

d
J=1

par
(10.1.5) Ap(vr,-,va) = Y sign(0)T1s(1) ** Tdo(a)

ceG,

est une forme multilineaire alternee non-nulle.
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DEFINITION. Soit V un K-EV de dimension d et 8 = {e1, -+ ,eq} une base de V.
La forme alternee Ay est appellee determinant de V' dans la base . On la note egalement

detgz = Ag.
d :
On a pour v; = ijl Tii€j, 1 < d

dgt(vl,"' ,Vd) = Z Sign(a)ﬂfla(l)- - Tdo(d)
ceS,

C’est l'unique forme multilineaire alternee A verifiant
(10.1.7) Aler, -+ ,eq) = 1.
C’est une base de Alt'Y(V, K) et plus precisement pour A € Alt'Y(V, K) on a
(10.1.8) A=Aer, - ,eq)Az.
Si on prend V = K% et # = HBY la base canonique on note simplement Ay = dety. Ainsi si
vi = (Tij)j<d

detg(vy, -+ ,vq) = Z sign(o)T14(1)- - - * -Tdo(d)-
O'EGd
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THEOREME 10.6 (Processus de symetrisation pour I’action d’un groupe fini). Soit K un corps,
(G,.) un groupe fini, W un K-ev de dimension finie et

L: G — GL(W)
une action a gauche de G sur W qui est lineaire: 1 est morphisme de groupe de G vers le groupe des
automorphismes de W. On notera cette action

g-w =1(g)(w).
Soit

X:G— (K™, X)
un morphisme de G vers le groupe multiplicatif de K (on dit que x est un caractere de G a valeurs
dans K* ). Soit w € W un vecteur, alors le vecteur

, -1
Wy 1= g x(h)"".h-
heG

verifie pour tout g € G
g - wy = x(g)wy.
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THEOREME 10.7 (Formules combinatoire pour le determinant). On a les formules suivantes

d

(10.2.1) detz(vy, - ,vq) = Z sign(o) Hl’m(i) = Z Sign(0)T16(1)- "+ * -Tdo(d)-

ceSy 1=1 ceSy

(10.2.2) detg(vy, - ,v To(i)j = Z sign(o)Ty(1)1-*** To(d)d-

cEGSy
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THEOREME 10.8 (Proprietes fonctionelles du determinant). Soit ¢ : V +— V un endomorphisme.
Pour tout A € At'D(V; K), on a

(10.2.5) 0™ (A) = det(p)A.

En particulier det(p) ne depend pas du choix de la base A.
L’application det : End(V') — K a les proprietes suivantes

(1) Homogeneite: soit A € K alors
det(X.©) = X% det ().
(2) Multiplicativite: on a
det(¢ o ) = det(y)) det(p) = det(p) det(1h) = det(p o V).
(3) Critere d’inversibilite: on a
det(p) # 0 <= ¢ € GL(V).
(4) Invariance par conjugaison: pour tout ¢ € End(V') et ¢ € GL(V) on a
det(Ad(v)(p)) = det(ppyp™) = det(p).
(5) Morphisme: L’application
det : GL(V) s KX

est un morphisme de groupes. En particulier det(Idy ) = 1.

- ~
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DEFINITION 10.5. Le noyau du morphisme det : GL(V) — K> est appelle "groupe special
lineaire de V7 et on le note

SL(V) = kerdet = {p € GL(V), detp = 1}.

C’est un sous-groupe distingue de GL(V') (car ¢’est un noyau,).
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DEFINITION 10.6. Soit M € My(K) une matrice carree de coefficients M = (m;j)ij<a- Le
determinant det(M) de M est (de maniere equivalente):

(1) Le scalaire
det M = det(pnr)

ou onr - K4 — K@ est Uapplication lineaire sur K¢ dont la matrice dans la base canonique
\ m‘cltt.;go (gp]\‘]) = M.

(2) Le determinant —relatif a la base canonique 95’%011 de l’espace vectoriel Coly(K) des vecteurs
colonnes de hauteur d— de l’ensemble des vecteurs colonnes de e la matrice M :

det(M) = detgo (Coly(M),---,Colg(M))

(3) Le determinant — relatif a la base canonique C@Eiwd de lespace wvectoriel Lig,(K) des
(=]
vecteurs lignes de longueur d— des vecteurs lignes de la matrice M dans [’espace des vecteurs

lignes Lig, (K):
det(M) = detizp_ (Ligy (M), -~ Ligy(M))
igyg
(4) La somme
(10.2.4) det(M) = Z Sign(o)me1y1- - Meo(d)d-

ceSy

(5) La somme
(10.2.5) det(M) = Z sign(o)mis(1)- ** * -Mdo(d)-

ceESy
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